Thyroid Nodules

Incidence

Age

Palpation

50

30

70

100

50

Age
Incidence of malignancy?

- 1000 new cases per annum in England and Wales (0.002%)
- 1 new case per 50,000, per year.
- 250,000 population = 5 new cases/year
- 500,000 population = 10 new cases/year.
Signs?

- 426 resected nodules, surgical correlation
- Benign nodules: iso/hyper-echoic and contain cystic degenerative change with a perinodular hypoechoic rim

Incidence of Papillary carcinoma?

- 6,499 patients: US and FNAC
- 164 cases (incidence: 2.52%) of malignancy:
 - 116 Papillary Ca
 - 23 Follicular Ca
 - 6 Medullary Ca
 - 7 Anaplastic Ca
 - 8 Hurthle Cell Ca
 - 4 Lymphomas

Occult Incidence.

- Autopsy series.
- Small (less than 1cm) papillary tumours: “micro-carcinomas”.
- Reported incidence: 10-30%.
Signs: papillary carcinoma?

• Combination of absent halo, microcalcification and type III (marked intranodular flow) most specific
• Specificity: 97.2%
• Sensitivity: 16.6%

Follicular carcinoma.
Follicular lesions.

- Spectrum from adenoma to carcinoma.
- 80% will be benign
- Follicular carcinoma – 10-15% of all thyroid Ca.
- Cytology of no use.
- Histology of no use in differentiation.
- Surgical specimen: vascular and capsular invasion – follicular carcinoma.
Ultrasound: follicular lesion.

2.96 cm
CBX: follicular lesion.
Map 3
170dB/C 2
Persist Off
2D Opt:FSCT
Fr Rate:Surv
SonoCT™

POST BIOPSY
Follicular lesions.

- Adenomas: solid, homogenous, iso/hyper-echoic.
- Well defined halo.
- Carcinoma: solid, hypo-echoic areas within.
Medullary carcinoma.
Medullary Carcinoma Thyroid

- Typically hypo-echoic.
- Contains calcification.
- Calcification more “globular”.
- “Calcification” may be amyloid.
Signs?
Predictors of Cancer.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>
Predictors of Cancer

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>
Predictors of Cancer

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>

RSNA 2005
Predictors of Cancer

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>

RSNA 2005
Predictors of Cancer

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>

RSNA 2005
Predictors of Cancer.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>

RSNA 2005
Predictors of Cancer

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>

RSNA 2005
Predictors of Cancer

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-calcifications</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>- Absence of halo</td>
<td>66%</td>
<td>46%</td>
</tr>
<tr>
<td>- Irregular margins</td>
<td>64%</td>
<td>84%</td>
</tr>
<tr>
<td>- Hypo-echoic</td>
<td>83%</td>
<td>49%</td>
</tr>
<tr>
<td>- Intra-nodular flow</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>MicroCa. & irreg m.</td>
<td>30%</td>
<td>95%</td>
</tr>
<tr>
<td>MicroCa. & hypoechoic</td>
<td>28%</td>
<td>95%</td>
</tr>
<tr>
<td>- Solid & hypoechoic</td>
<td>73%</td>
<td>69%</td>
</tr>
</tbody>
</table>
Thyroid nodules.

- Sorting out nodules.
- Learn from others – Breast Radiologists.
- R Classification.
- Cytological classification(1 -5)
- Clinical scenario.
- Correctly manage patient.
Breast nodules – R classification.

1: Normal.
2: Probably benign.
3: Indeterminate.
4: Suspicious.
5: Malignant
Nodules – R classification……thyroid?

1 : Normal.
2 : Probably benign.
3 : Indeterminate.
4 : Suspicious.
5 : Malignant
R 2
Lymphoma
Thyroid nodules.

- R Classification.
- Cytological classification(1 -5)
- Clinical scenario.
- Correctly manage patient.
Case 1.
Case 2.
R 2 or 3?
Case 3.
FNA(x2) : non-diagnostic.
CBX: No features of malignancy, probable colloid nodule.
Case 4.
Case 5.
Parathyroid
Parathyroid Adenoma – localisation.

“the only localisation required is to localise an experienced parathyroid surgeon”
Localisation?

- Unilateral versus bilateral exploration?
- Minimally invasive surgery.
- Day case parathyroidectomy.
- Excision under local anaesthesia.
Localisation - patient.

• Reduce operating time.
• Decrease in post surgical complications.
• Safer and more cost effective procedure.
Parathyroid localisation.

- Problem?
- Unpredictability of anatomy.
Anatomy.

- 91% have 4 glands.
- 4% have 3 glands.
- 5% have 5 glands.
- (0.6% have six glands.)
Anatomical variation.

- Embryology!
Embryology – Superior Parathyroid.

- Superior parathyroid derives from 4th branchial pouch-lateral thyroid/C cell complex.
- Postero-lateral superior (mid)pole.
- Short embryological path – fairly constant anatomy.
Embryology – inferior parathyroid..

- Inferior gland – third branchial pouch.
- Descends with the thymus.
- Longer embryological route – more varied position.
- May lie within the fat of the thyro-thymic horn.
- Inferior parathyroids are likely to be intra-thyroid (not superior)
Localisation?

• Only 75% of abnormal parathyroids are found at the “normal” position.
Intra-thyroid adenoma.

- 4%?
- Usually the inferior parathyroid.
- Sub-capsular.
- Intra-thyroid.
Left inferior parathyroidectomy.

“Despite pre operative localisation and extensive search – no adenoma found”
“Missed adenomas”

• 104 re-operations.
• Positions of adenomas found.
• All amenable to a neck incision.
Ultrasound Technique

• Transverse imaging.
• Retro – thyroid region.
• Neck extension.
• Infra – thyroid region.
• Para-tracheal region.
• Carotid sheath.
• Tracheo- oesophageal groove.
Superior.
Extra-thyroid?

Differential diagnosis: thyroid nodules.
Inferior.
Differential diagnosis: lymph nodes.
Differential diagnosis: lymph nodes.
Ultrasound Technique
Our Practice?

• Surgery.
• Ultrasound first.
• Ultrasound negative – Sestamibi scanning.
• Sestamibi positive – occ. CT. (SPECT- CT)
• US & Sestamibi negative – failure of localisation.
Neath experience.

• Pre-operative localisation positive.
• Reduction in operating time – 30%.
• 75 mins with good predictability.
• Reduction in stress levels.
• Planning.
• Failed localisation : range 75 – 225 mins
Neath experience.

- 31 cases.
- Ultrasound sensitivity – 72%
- (True positive – 62%; False positive – 14%; False negative – 24%)
- Ultrasound plus Sestamibi – sensitivity 88%
Morriston experience.

- 32 patients analysed.
- 22 patients had adenoma identified on US.
- 19 had proven adenoma (True positive)
- 3 – no adenoma – false positive.
- 2 – lymph nodes, 1-thyroid nodule.
Results.

- 10/32 had negative US, 9 had adenoma proven (false neg), 1 had no adenoma identified at surgery.

- Ultrasound – Sens: 68%
 PPV: 86%
 NPV: 10%
Results

- Sestamibi scans on all US negative. (2 US positive)
- 12 patients: 7 positive-all proven (Tp)
- 5 negative (4 proven (F-ve))
- (1 disease negative.)
- Ultrasound plus Sestamibi – Sensitivity 70%.
Comparison?

- WJS review.
- 52 studies reviewed.
- Sens range from 39% to 90%.
- Highlights side/site differences in interpretation.
Accuracy.

- Side: 88% (left/right)
- Site: 81% (superior/inferior)
OO MASSAGE

2 FRONTAL
3 CEREBELLUM
4 PITUITARY GLAND
5 TEMPORAL AREA
6 NOSE
7 NECK
8 EYE
9 EAR
11 TRAPEZOID
12 THYROID GLANDS
13 PARATHYROID
14 LUNGS
15 STOMACH
16 DUODENUM
18 LIVER
19 GALL BLADDER
20 SOLAR PLEXUS
21 ADRENAL GLANDS
22 KIDNEYS
23 URETER
24 BLADDER
25 SMALL INTESTINES
26 APPENDIX
28 ASCENDING COLON
29 TRANSVERSE COLON
30 DESCENDING COLON
31 RECTUM
32 ANUS
33 HEART
34 SPLEEN
35 GENITAL GLANDS
36 36
2 FRONTAL
3 CEREBELLUM
4 PITUITARY GLAND
5 TEMPORAL AREA
6 NOSE
7 NECK
8 EYE
9 EAR
11 TRAPEZOID
12 THYROID GLANDS
13 PARATHYROID
14 LUNGS
15 STOMACH
16 DUODENUM
18 LIVER
19 GALL BLADDER
20 SOLAR PLEXUS
21 ADRENAL GLANDS
22 KIDNEYS
23 URETER
24 BLADDER
25 SMALL INTESTINES
26 APPENDIX
28 ASCENDING COLON
29 TRANSVERSE COLON
30 DESCENDING COLON
31 RECTUM
32 ANUS
33 HEART
34 SPLEEN
35 GENITAL GLANDS
1 HEAD
00 MASSAGE

2 FRONTAL
3 CEREBELLUM
4 PITUITARY GLAND
5 TEMPORAL AREA
6 NOSE
7 NECK
8 EYE
9 EAR
11 TRAPEZOID
12 THYROID GLANDS
13 PARATHYROID
14 LUNGS
15 STOMACH
16 DUODENUM
18 LIVER
19 GALL BLADDER
20 SOLAR PLEXUS
21 ADRENAL GLANDS
22 KIDNEYS
23 URETER
24 BLADDER
25 SMALL INTESTINES
26 APPENDIX
28 ASCENDING COLON
29 TRANSVERSE COLON
30 DESCENDING COLON
31 RECTUM
32 ANUS
33 HEART
34 SPLEEN
35 GENITAL GLANDS
1 HEAD